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The transient behaviour of plane fountains with a uniform inlet velocity, injected upwards into a quies-
cent homogeneous fluid of lower density to impinge on a solid flat ceiling, is investigated. The Reynolds
number, the Froude number and the Prandtl number of these impinging fountains have the values in the
ranges of 50 6 Re 6 1000; 8 6 Fr 6 20 and 7 6 Pr 6 700, and the height of the solid ceiling away from
the fountain source is varied in the range of 10Xin 6 H 6 30Xin , where Xin is the half-width of the planar
fountain source slot. A scaling is found by dimensional analysis for the augmented spreading distance
(H þ Xd, where Xd is the spreading distance of the impinging fountain), which shows that
ðH þ XdÞ=Xin � Fr

4
3�

2
3ðcþgþ2/ÞRe�ðcþgÞPr�gðH=XinÞ/, where the powers c; g and / can be determined empiri-

cally. The direct numerical simulation results show that after the fountain impinges upwards on the ceil-
ing it spreads outwards along the ceiling until gravity forces it to fall. Two different scenarios are
identified. In the first scenario, a nearly constant measurable spreading distance is obtained at full
development. In the second scenario, however, the fountain floods the whole computational domain
and no spreading distance exists at full development. The numerical results further show that in the first
scenario the augmented spreading distance (H þ Xd) has the reduced scaling of ðH þ XdÞ=Xin �
Fr2=3ðH=XinÞ1=2 for the plane impinging fountains with the parameter values in the ranges of
50 6 Re < 125; 8 6 Fr 6 20 and 7 6 Pr 6 700.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fountains occur both in nature and in industrial situations. A
fountain will form whenever a fluid is injected upwards into a
lighter fluid or downwards into a denser fluid. For a jet with a rel-
atively low discharge momentum flux the jet will penetrate a finite
distance in the ambient fluid and fall back as a plunging plume
around the entering fluid. For a jet with a large enough discharge
momentum flux, however, the jet will impinge on a solid flat ceil-
ing, if such a ceiling exists, and the stagnation pressure will force
the fluid to spread outwards along the ceiling until gravity forces
the intrusion fluid to fall. Since the buoyant fluid is forced out-
wards before it attains the maximum height, impinging fountains
are wider than free fountains that do not impinge on any ceiling.

Impinging fountains are found in many engineering applica-
tions: the heating of a large open structure, such as an aircraft
hanger, by large fan-driven heaters at the ceiling level; the cooling
of turbine blades; the cooling of electronic components; the mixing
of a two-layer water reservoir with propellers; the mixing in met-
allurgical furnaces by gas bubble plumes, to name just a few. Hence
it is important to understand the fundamental physics of such
flows.
ll rights reserved.
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yana).
The transient behaviour of fountains is governed by the Rey-
nolds number Re, the Froude number Fr, and the Prandtl number
Pr, defined for plane fountains with a uniform inlet velocity as,

Re � VinXin

m
;

Fr � Vinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðqin � q1Þ=q1Xin

p ¼ Vinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gb0ðT1 � TinÞXin

p ;

Pr � m
j
;

ð1Þ

where Xin is the half-width of the inlet jet. The second expression of
the Froude number applies when the density difference is due to
the difference in temperatures of the fountain and the ambient flu-
ids using the Oberbeck–Boussinesq approximation. For impinging
fountains, an additional control parameter is H, which is the height
of the ceiling away from the fountain source. Alternatively, the
Richardson number, Ri ¼ 1=Fr2, has sometimes been used in the lit-
erature [1–3].

1.1. Free fountains

Significant understanding of the dilution, the momentum trans-
fer and the height a fountain attains before negative buoyancy
forces it to change direction have been achieved for both planar
and round fountains through extensive investigations. Most of
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Nomenclature

b buoyancy flux per unit mass per unit span
C� constant of proportionality, defined in (2)
C0 constant of proportionality, defined in (3)
C constant of proportionality, defined in (4)
Fr Froude number
g acceleration due to gravity
H height of the ceiling
m momentum flux per unit mass per unit span
P dimensional pressure
p non-dimensional pressure
Pr Prandtl number
R radius of nozzle
Re Reynolds number
T dimensional temperature of fluid
U dimensional horizontal velocity
u non-dimensional horizontal velocity
V dimensional vertical velocity
v non-dimensional vertical velocity
W width of the computational domain
X dimensional horizontal coordinate

XR spreading radius
Xd spreading distance
x non-dimensional horizontal coordinate
Y dimensional vertical coordinate
y non-dimensional vertical coordinate
Zm dimensional fountain height
zm non-dimensional fountain height

Greek symbols
b0 coefficient of volumetric expansion
j thermal diffusivity
m kinematic viscosity
q fluid density
s non-dimensional time
h non-dimensional temperature of fluid

Subscripts
in variable index at source
1 variable index of ambient

Table 1
Summary of some previous scalings obtained for round fountains.

Investigators Scaling Range of Fr and/or Re

Transition/turbulent
Morton [4] zm ¼ 2:05Fr
Abraham [5] zm ¼ 2:75Fr
Turner [6] zm ¼ 2:46Fr 2 K Fr K 30
Campbell and Turner [7] zm ¼ 2:07Fr 20 K Fr K 90
Baines et al. [8] zm ¼ 2:46Fr 10 K Fr K 250
Mizushina et al. [15] zm ¼ 2:35Fr 5 K Fr K 250; 1100 K Re K 2700

Zhang and Baddour [16] zm ¼ 1:7Fr1:3 Fr < 7
3:06Fr Fr > 7

� �
1 K Fr K 300

Friedman and Katz [1] zm ¼
3:1Fr Fr > 3:0
1:4Fr2 Fr < 3:0

�

Kaye and Hunt [17] zm ¼
2:46Fr Fr J 3:0
0:9Fr2 1:0 K Fr K 3:0
0:94Fr2=3 0 < Fr K 1:0

8<
:

Laminar/transition
Lin and Armfield [9] zm � Fr2=3Re�2=3 0:0025 6 Fr 6 0:2; 5 6 Re 6 800
Lin and Armfield [10] zm � Fr 0:2 6 Fr 6 1:0; Re ¼ 200
Lin and Armfield [11] zm � FrRe�1=2 0:2 6 Fr 6 1:0; 5 6 Re 6 200
Lin and Armfield [18] zm � FrRe1=4 1:0 6 Fr 6 8:0; 100 6 Re 6 800
Philippe et al. [19] zm � FrRe1=2 1 K Fr K 200; 0 < Re K 80
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the earlier studies have focussed on turbulent fountains where the
flows have high Re values. Among those, Morton [4], Abraham [5]
and Turner [6] were the first to make significant and pioneering
contributions to the understanding of turbulent fountain flows
by obtaining analytical solutions for the maximum penetration
heights for round (axisymmetric) fountains. Morton [4] analysed
the fountain as a case of a forced plume. By using the entrainment
equations to quantify the increasing radius, the decreasing buoy-
ancy and the velocity of dense fluid injected upwards into a less
denser ambient fluid, Morton obtained Zm=Rin ¼ zm ¼ 2:05Fr,
where Zm is the maximum penetration height attained by the foun-
tain in the ambient fluid and zm is its dimensionless form which is
non-dimensionalised by the fountain source radius Rin. Abraham
[5] subsequently proposed an analytical solution in which he con-
sidered the decrease of the vertical flux of tracer near the top of the
fountain, which was not present in [4] where a constant vertical
flux was assumed, and obtained zm ¼ 2:74Fr. A dimensional analy-
sis made by Turner [6] showed that,

zm ¼ C�Fr; ð2Þ

where C� is a constant of proportionality. Following a series of
experiments on turbulent round fountains for 2 K Fr K 30, Turner
[6] found that C� ¼ 2:46. The studies on round fountains were later
extended to plane fountains by Campbell and Turner [7] and Baines
et al. [8], who showed analytically that for a source size small en-
ough compared with the penetration height of the fountain, the
maximum dimensionless penetration height scales as follows,

zm ¼ Zm=Xin ¼ C 0Fr4=3; ð3Þ

where C0 is another constant of proportionality and Xin is the half-
width of the planar fountain source slot. Baines et al. [8] found
C0 ¼ 0:65 from their experiments on plane turbulent fountains for
500 K Fr K 3400 but Campbell and Turner [7] obtained C0 = 1.64–
1.97 for 5:6 K Fr K 51.

On the other hand, if the discharge momentum flux of a foun-
tain flow plays the same or less important role than the negative
buoyancy flux, the flow will be in the laminar region. For these
weak fountains with small Fr values at the order of unity, it has
been shown that their flow behaviour is considerably different
from that of turbulent fountains [10,12,9,13,11]. For example, it
has been shown that Zm is of the same order as Rin for weak foun-
tains while for turbulent fountains, as shown above, Zm is much
larger than Rin; there are no distinguishable upward and down-
ward flows in weak fountains, instead, the streamlines curve and
spread from the fountain sources, while in turbulent fountains,
the upward and the downward flows are clearly distinguished;
there is usually little entrainment of the ambient fluid into the
fountain fluid in weak fountains while such an entrainment is
one of the major activities occurring in turbulent fountains; the
Reynolds number affects the penetration height in laminar foun-
tains whereas in turbulent fountains it does not. For these laminar
and weak fountains, more detailed results from previous studies
were recently summarised in [14]. Details of other studies on lam-
inar and turbulent fountains are summarised in Tables 1 and 2 for
round and plane fountains, respectively. Although a similar scaling
has been obtained by various researchers, there are significant
variations in the constant of proportionality [22].

Recently, Srinarayana et al. [23] carried out a numerical investi-
gation of laminar plane fountains in homogeneous fluid for
0:25 6 Fr 6 10:0; Re ¼ 100 and Pr ¼ 7. They categorised the flow
into three regimes: steady and symmetric for 0:25 6 Fr 6 2:0; un-
steady with periodic lateral oscillations (flapping) for 2:25 6



Table 2
Summary of some previous scalings obtained for plane fountains.

Investigators Scaling Range of Fr and/or Re

Transition/turbulent
Campbell and

Turner [7]
zm ¼ CFr4=3; C ¼ 1:64� 1:97 5:6 K Fr K 51

Baines et al. [8] zm ¼ 0:65Fr4=3 500 K Fr K 3400

Zhang and
Baddour [20]

zm ¼
ð2:0� 1:12Fr�2=3ÞFr4=3 Fr K 6:5
0:71Fr2 Fr K 6:5
2:0Fr4=3 Fr J 10:0

8<
:

9=
;0:6 K Fr K 114

325 K Re K 2700

Goldman and
Jaluria [21]

zm ¼ 5:83Fr0:88 1:4 K Fr K 15:8;500 K Re K 2500

Laminar/transition
Lin and Armfield

[11,12]
zm � FrRe�1=2 0:2 6 Fr 6 1:0;5 6 Re 6 200
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Fr 6 3:0; and unsteady with aperiodic flapping for 4:0 6 Fr 6 10:0.
Williamson et al. [24] conducted a series of experiments on round
fountains and observed some different interesting flow behaviours.
They broadly classified fountains as laminar for Re < 120 and tran-
sitional/turbulent for higher Re, independent of Fr. For
10 < Re < 120 and 0:7 < Fr < 10, the flow was categorised into
steady, flapping/circling, flapping/bobbing and laminar bobbing,
clearly distinguished by constant FrRe2=3 lines. For higher Fr in
the same range of Re, they observed sinuous instabilities in the ris-
ing fountain column. Details of others investigations on free foun-
tains and buoyancy-dominated flows can be found in [25–27].

1.2. Impinging fountains

Impinging fountains have received less attention than free
fountains in the literature. A schematic of a typical two-dimen-
sional structure of a vertical fountain impinging on a flat solid ceil-
ing is shown in Fig. 1. In this case, a stagnation point will form at
the center of the jet adjacent to the ceiling. The stagnation pressure
at that location acts to turn the flow to create an outward spread-
ing jet (intrusion). At some spreading distance Xd, the negative
buoyancy of the jet will cause the intrusion to fall from the ceiling
surface. It is expected that as the source Fr increases, complex
recirculation patterns will be set up between the upflow, the
downflow and the intrusion that will affect the dilution rate and
flow patterns in the falling flow. In the case of plane fountains,
Xd is the spreading width, whereas in the case of round fountains,
Xd is the spreading radius.

Kuruppu and Lemckert [28] conducted experiments on imping-
ing round fountains by pumping tap water upward into air through
a vertical nozzle of diameter 10 mm. The height of the flat solid
ceiling away from the nozzle exit, H, was varied from 10 to
40 cm, Re from 5500 to 17,000, and Fr from 7.5 to 23, which re-
2Xd ceiling

floor

H

2Xin

Fig. 1. Schematic of a typical impinging fountain.
sulted in fully turbulent flows. They modified the scaling (2) by
considering that the fountain travels a distance XR þ H, where XR

is the spreading radius, before the negative buoyancy dominates
which causes the fluid to plunge downwards, and proposed the fol-
lowing scaling,

H þ XR

Rin
¼ CFrn: ð4Þ

The values of constants C and n were determined experimentally by
Kuruppu and Lemckert [28] and were found to be 2.58 and 1.4,
respectively.

Holstein and Lemckert [29] conducted a series of experiments
by directing fresh water vertically downwards into salt water solu-
tion. They kept the nozzle diameter at 10.9 mm, but used three
nozzles of different lengths, resulting in H ¼ 75, 133 and
150 mm. The densities of the salt solution were varied from
1001.55 to 1008.81 kg/m3; Re from 220 to 1575, and Fr from 1.8
to 31.7. Their results revealed that for each H; n was nearly con-
stant (n ¼ 0:4); however, the constant C was found to increase with
increase in H in a fashion given by,

C ¼ 2:7
H
Rin

� �0:5

: ð5Þ

Lemckert [30] conducted experiments by pumping salt water
vertically up into fresh-water tank and allowing the fountain to
impinge on the free surface. The diameter of the nozzle was
1 cm. The experiments were conducted for 6 K Fr K 54; 5 K H K
25 cm, and 378 K Re K 1590. The values of C and n were found to
be 4.8 and 0.74, respectively. Lemckert [31] also conducted exper-
iments to examine the spreading radius of fountains when im-
pinged on smooth horizontal surface by injecting fresh water
vertically downwards into salt water solution and obtained,

C ¼ 2:9
H
Rin

� �0:5

; ð6Þ

and n ¼ 0:36 for 7:1 K Fr K 18:5; 604 K Re K 1640 and H ¼ 50; 75;
100; 133 and 150 mm.

Cooper and Hunt [32] carried out experimental study on
impinging axisymmetric turbulent fountains by injecting fresh
water downward into salt water solution. Similarly they found that
after impinging the fountain transforms into a radial wall jet and
eventually detaches from the plate. They assumed that the flow
properties near the ceiling are similar to those at the fountain
source. They further assumed that a fraction, c, of vertical momen-
tum of the mean flow in the downflowing fountain is transformed
to radial momentum in the spreading jet. They showed that the
Froude number, Frrad, of the spreading jet is related to Fr, the Fro-
ude number of the source by:

Frrad ¼ 2�
5
2a�2c3ðH=RinÞ�2Fr; ð7Þ

where a ¼ 0:0535 is the entrainment constant applicable to jets.
They found that for H=Rin � 1:77Fr, the steady-state flow behaves
similar to that of a turbulent jet impinging on a plate. For
H=Rin < 2:65Fr, there were three distinct stages of development:
firstly, the starting fountain impinges on the plate and a horizontal
radial flow is established with a vortex ring like a front; secondly,
the separation radius of the attached spreading jet reaches a maxi-
mum and a starting plume develops with the spreading jet acting as
a disturbed source of buoyancy; finally, the momentum flux of the
fountain when it reaches the plate is reduced and the separation ra-
dius decreases and settles to a quasi-steady-state value. They ob-
tained the following scaling between the non-dimensional
spreading radius and Frrad,

XR � Fr3=2
rad : ð8Þ
H
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Lawrence and MacLatchy [33] investigated three different
buoyant jets: a vertical buoyant jet; a radially discharged buoyant
jet; and a negatively buoyant jet. They found that there are consid-
erable variations in the nature of the flow that developed. How-
ever, the flows exhibit some important similarities. The radial
flow initially behaves like a buoyant surface jet whose thickness
increases linearly due to entrainment of ambient fluid into the
jet via shear instabilities. Eventually, buoyancy forces dominated
and these instabilities collapse, leaving a radial buoyant plume of
almost constant thickness. This growth and subsequent collapse
of the instabilities have been interpreted by some investigators
as evidence of the existence of an internal hydraulic jump, but
the visualisation of their experiments did not support this.

There have been other studies of fountains impinging on a
boundary such as [34–36], however, they provided no detailed
information of the fountain close to the boundary or quantification
of the spreading of the fountain after impingement in terms of the
source Fr and Re studies.

In the present study, the transient behaviour of two-dimen-
sional impinging plane fountains formed by jets injected vertically
upwards into a homogeneous fluid of lower density is studied. Di-
rect numerical simulation results are obtained for Fr; Re and Pr in
the ranges of 8:0 6 Fr 6 20:0; 50 6 Re 6 1000 and 7 6 Pr 6 700,
with 10 6 H=Xin 6 40. The remaining parts of this paper is struc-
tured as follows: in Section 2, the flow configuration and the
numerical method used are briefly described; in Section 3, the
dimensional analysis relating the characteristic parameter of a
impinging fountain, that is the augmented spreading distance, to
the flow control parameters, that is Fr; Re, Pr and H=Xin, is pre-
sented; in Section 4, the time evolution and the flow characteristics
of impinging fountains are detailed and the numerical validation of
the analytical scaling is presented; and finally conclusions are
made in Section 5.

2. Numerical model

The fluid between horizontal insulated solid walls a distance H
apart is initially still and isothermal at temperature T1. For t > 0 a
jet issues from a slot of width 2Xin in the floor with a uniform
velocity Vin and temperature Tin < T1. It is assumed that the flow
remains two-dimensional. Fig. 2 depicts the computational domain
and the boundary conditions. The buoyancy is a result of the tem-
perature difference between the jet fluid injected from the source
and the ambient fluid.

The governing equations are the incompressible Navier–Stokes
equations and the temperature equation with the Oberbeck–Bous-
sinesq approximation for buoyancy, which can be written in con-
servative, non-dimensional form in Cartesian coordinates as
follows,
op
en

bo
un

da
ry

open
boundary

W

Y, V

T∞

X, U

no-slip, adiabatic floor

no-slip, adiabatic ceiling

Tin , Vin

2Xin

Fountain source

H

no-slip, adiabatic floor

Fig. 2. The computational domain and the appropriate boundary conditions.
@u
@x
þ @v
@y
¼ 0; ð9Þ

@u
@s
þ @ðuuÞ

@x
þ @ðvuÞ

@y
¼ � @p

@x
þ 1

Re
@2u
@x2 þ

@2u
@y2

 !
; ð10Þ

@v
@s
þ @ðuvÞ

@x
þ @ðvvÞ

@y
¼ � @p

@y
þ 1

Re
@2v
@x2 þ

@2v
@y2

 !
þ 1

Fr2 h; ð11Þ

@h
@s
þ @ðuhÞ

@x
þ @ðvhÞ

@y
¼ 1

RePr
@2h
@x2 þ

@2h
@y2

 !
: ð12Þ

The following non-dimensionalisation is used:

x ¼ X
Xin

; y ¼ Y
Xin

; u ¼ U
Vin

; v ¼ V
Vin

;

s ¼ t
ðXin=VinÞ

; p ¼ P

qV2
in

; h ¼ T � T1
T1 � Tin

:
ð13Þ

The initial and boundary conditions are,

u ¼ v ¼ h ¼ 0 at all x; y when s < 0; ð14Þ

and when s P 0,

@u
@x
¼ 0;

@v
@x
¼ 0;

@h
@x
¼ 0 on x ¼ � W

2Xin
; 0 6 y 6

H
Xin

; ð15Þ

u ¼ 0; v ¼ 1; h ¼ �1 on jxj 6 1; y ¼ 0; ð16Þ

u ¼ v ¼ 0;
@h
@y
¼ 0 on 1 6 jxj 6 W

2Xin
; y ¼ 0; ð17Þ

u ¼ v ¼ 0;
@h
@y
¼ 0 on 0 6 jxj 6 W

2Xin
; y ¼ H

Xin
: ð18Þ

It is assumed that the variation of flow variables in the normal
direction at the left and the right open boundaries is negligible. Fur-
ther, it is ensured that the open boundaries are sufficiently far from
the region of interest.

The results are obtained using Gerris [37,23], an open source
quad-tree based adaptive mesh solver which uses a fractional-step
projection method. The total width of the computational domain is
W ¼ 300Xin, i.e., �150 6 x 6 þ150, and the height H is varied so
that the fountain impinges on the ceiling. Gerris was tested to
determine an optimum mesh with the case of Fr ¼ 8:0; Re ¼
50; Pr ¼ 7 and H=Xin ¼ 12:5 and the criterion used for deciding
the optimum mesh is that the change in the non-dimensional aug-
mented spreading distance, ðH þ XdÞ=Xin, is less than 1%. The mesh
is dynamically adapted based on the vorticity and the temperature
and the adaptive refinement is performed at the fractional time-
step. A cell is refined, i.e., divided into four square sub-cells, when-
ever ðjr � v jDxÞ=max jv j > Kv and jrhjDx > Kh, where Dx is the
size of the cell, Kv is a user-defined threshold which can be inter-
preted as the maximum angular deviation (caused by the local vor-
ticity) of a particle travelling at a speed max jv j across the cell and
Kh is a user-defined threshold for the temperature gradient across a
cell. The cells are also coarsened likewise [23].
3. Dimensional analysis

For an impinging fountain, it is apparent that the augmented
spreading distance H þ Xd will be dependent on the momentum
flux min ¼ 2V2

inXin, the buoyancy flux bin ¼ 2gðqin � q1Þ=q1VinXin,
the fluid viscosity m, the fluid thermal diffusivity j and the height
of the ceiling H. Hence, the following power-law scaling can be
established for H þ Xd,

H þ Xd � ma
inbb

inm
cjgH/: ð19Þ

The values of the powers in this scaling can be obtained by dimen-
sional analysis as follows:
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The parameters min; bin; m; j and H have the following respec-
tive dimensions,

½min	 ¼
L3

t2

" #
; ½bin	 ¼

L3

t3

" #
; ½m	 ¼ L2

t

" #
; ½j	 ¼ L2

t

" #
; ½H	 ¼ ½L	;

ð20Þ

where ‘‘[ ]” means ‘‘has dimensions of”, and L and t are the primary
dimensions for length and time; the scaling (19) leads to,

½L	 � L3

t2

" #a
L3

t3

" #b
L2

t

" #c
L2

t

" #g

½L	/ � ½L	3aþ3bþ2cþ2gþ/½t	�2a�3b�c�/
:

ð21Þ

This leads to the following equations for the powers,

L : 1 ¼ 3aþ 3bþ 2cþ 2gþ /; ð22Þ
t : 0 ¼ �2a� 3b� c� /; ð23Þ

which give,

a ¼ 1� ðcþ gþ /Þ; ð24Þ

b ¼ �2
3
þ 1

3
ðcþ gÞ þ 2

3
/: ð25Þ

By using the definitions of Re; Fr; Pr and the expressions for min

and bin, the scaling (19) becomes,

H þ Xd � XinFr
4
3�

2
3ðcþgþ2/ÞRe�ðcþgÞPr�g H

Xin

� �/

; ð26Þ

which can also be expressed in non-dimensional form as follows,

H þ Xd

Xin
� Fr

4
3�

2
3ðcþgþ2/ÞRe�ðcþgÞPr�g H

Xin

� �/

: ð27Þ

For large Reynolds and Prandtl numbers, the augmented spreading
distance will be independent of the viscosity and thermal diffusivity
and thus c ¼ 0 and g ¼ 0. The above scaling (27) then reduces to,

H þ Xd

Xin
� Fr

4
3ð1�/Þ H

Xin

� �/

: ð28Þ
(a) τ = 10

(c) τ = 70

(e) τ = 200

(g) τ = 500

(i) τ = 1400

Fig. 3. Time evolution of temperature contours
Further if the height of the ceiling is large enough such that the
fountain does not impinge (corresponding to a free fountain case),
H þ Xd � Zm with / ¼ 0 such that,

Zm

Xin
¼ zm � Fr

4
3; ð29Þ

which is exactly the same as the scaling (3), obtained by Baines et
al. [8] for turbulent plane fountains. In the present case the powers
c; g and / are unknown and will be evaluated empirically.

4. Direct numerical simulation results

4.1. General observations of flow evolution

An overview of the temperature contour evolution for a typical
impinging fountain is presented in Fig. 3 for Fr ¼ 10; Re ¼
50; Pr ¼ 7 and H=Xin ¼ 15. The initial rise velocity is gradually slo-
wed by the negative buoyancy with a corresponding increase in
width of the fountain head, as seen in Fig. 3(a)–(c). Associated with
the advance of the fountain head are two symmetric vortices asso-
ciated with the entrainment of ambient fluid. At the instant
s 
 100, the fountain strikes the ceiling and the stagnation pres-
sure then causes the fluid to spread outwards along the ceiling
(Fig. 3(d)). This spreading continues until the momentum of the
spreading fluid along the ceiling diminishes and the negative buoy-
ancy forces the intrusion fluid to fall downwards. Some of this fall-
ing fluid is re-entrained back into the upflow of the fountain and
the rest continues to fall until it reaches the floor where it moves
outwards as a gravity current, as shown in Fig. 3(e)–(g). It is also
seen that during this period the spreading width increases. After
s 
 500, the spreading distance becomes nearly constant, with
unsteadiness present only in the intrusion fluid moving outwards
along the bottom floor, as shown in Fig. 3(h)–(j). At this stage,
the impinging fountain has attained its fully developed, steady
state. From Fig. 3(c) and (i) it is observed that the spreading dis-
tance is much greater than the maximum fountain width before
it strikes the ceiling, indicating that impinging fountains are wider
than free fountains, as noted before. It is also interesting to see that
(b) τ = 50

(d) τ = 100

(f) τ = 300

(h) τ = 1000

(j) τ = 1500

at Fr ¼ 10; Re ¼ 50; Pr ¼ 7 and H=Xin ¼ 15.
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the impinging fountain is symmetric at such a high Froude number
whereas at the same Froude number (Fr ¼ 10), the free fountain is
asymmetric [23].

Fig. 4 contains the temperature contours for impinging foun-
tains with different Fr at Re ¼ 50; Pr ¼ 7 and H=Xin ¼ 15 after the
flows attain their respective steady states. It is observed that the
spreading distance increases with Fr, although the variations are
relatively small (from about ðH þ XdÞ=Xin ’ 26:5 at Fr ¼ 8 to
ðH þ XdÞ=Xin ’ 30:7 at Fr ¼ 20). Once again the fountains are found
to be symmetric for these high Froude numbers. It is also observed
(a) τ = 10

(c) τ = 70

(e) τ = 200

(g) τ = 500

(i) τ = 1400

Fig. 4. Steady-state temperature contours for dif

Fig. 5. Steady-state temperature contours for dif
from Fig. 4 that waves are present in the intrusions in the immedi-
ate vicinity of the fountain, which also impinge on the ceiling.

The fully developed temperature contours for impinging foun-
tains with varying ceiling height ratios at Fr ¼ 10; Re ¼ 50 and
Pr ¼ 7 are shown in Fig. 5. The fountains are symmetric for
H=Xin ¼ 10 to 25, as seen in Fig. 5(a)–(e). The impinging fountain
at H=Xin ¼ 30 is asymmetric, with a slight oscillation evident in
the upflow in Fig. 5(f). For larger values of H=Xin the fully developed
flows are asymmetric and unsteady with the fountain core flap-
ping from side to side, similar to the behaviour observed in
(b) τ = 50

(d) τ = 100

(f) τ = 300

(h) τ = 1000

(j) τ = 1500

ferent Fr at Re ¼ 50; Pr ¼ 7 and H=Xin ¼ 15.

ferent H=Xin at Fr ¼ 10; Re ¼ 50 and Pr ¼ 7.
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Fig. 8. Time series of the augmented spreading distance for different Re at
Fr ¼ 10; Pr ¼ 7 and H=Xin ¼ 15.
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free-fountain flows [23]. It is also observed that at the higher H=Xin

ratios the waves that form in the intrusion do not reach the ceiling.
Fig. 6(a) shows the streamlines for a fountain at

Fr ¼ 10; Re ¼ 50; Pr ¼ 7 and H=Xin ¼ 20 at full development. The
streamlines are symmetric and a recirculation region is seen on
either side of the fountain core indicating the movement of hot
fluid trapped between the upflow and the downflow on either side.
Fig. 6(b) shows the pressure field with three high pressure regions
identified: one on the ceiling and two on the floor. The fountain
stagnates after hitting the ceiling and the stagnation pressure
causes the fluid to move outwards. Gravity then causes the out-
ward moving fluid to fall to the floor creating further stagnation re-
gions on each side of the fountain source.

In Fig. 7 the temperature contours of impinging fountains with
different Re at Fr ¼ 10; Pr ¼ 7 and H=Xin ¼ 15 are presented. It is
observed that the temperature contours are very similar for
Re ¼ 50 and Re ¼ 75, as seen in Fig. 7(a) and (b). At Re ¼ 100, how-
ever, a slightly different intrusion behaviour is observed, although
no significant variation in the spreading distance is seen. It is also
observed that the impinging fountains continue to be symmetric at
Re ¼ 75 and Re ¼ 100, as shown in Fig. 7(b) and (c). At Re ¼ 125, a
slightly asymmetric behaviour is observed both in the upflow of
the fountain and in the spreading of the intrusion. Also a transition
from smooth to chaotic behaviour with large spatial variability is
observed in Fig. 7(d) at Re ¼ 125, where instabilities develop at
the interfaces between flows and strong mixing is evident within
the rising and falling fountain flow. At Re ¼ 150 and higher Rey-
nolds number, the flows are seen to also exhibit a chaotic structure
with stronger mixing as the Reynolds increases, as demonstrated
in Fig. 7(e)–(h). The time series of the augmented spreading dis-
tance ðH þ XdÞ=Xin, presented in Fig. 8 for Reynolds number
Re ¼ 200–1000 at Fr ¼ 10; Pr ¼ 7 and H=Xin ¼ 15, show that these
higher Reynolds number flows are also strongly unsteady and no
unique spreading distance, even in a time-averaged sense, can be
obtained. As these higher Reynolds number flows further evolve,
the fountain fluids continue to spread outwards, ultimately flood-
ing the full domain. Any spreading distance obtained for these
flows is essentially a snapshot representing the extent of the foun-
tain spreading at that stage of development. The flooding of the
whole computational domain is of particular interest to applica-
Fig. 6. (a) Streamlines and (b) pressure field at

Fig. 7. Steady-state temperature contours for dif
tions involving air-conditioning and ventilation systems where
the time needed for the hot or the cold fluid to fill the room is
important.

From the above observations, it is apparent that two different
scenarios can be identified for impinging fountains, that is, a
steady scenario and an unsteady scenario, mainly based on their
Reynolds numbers. In the steady scenario, when the Reynolds
number of the impinging fountain is small (Re < 125), a nearly
constant spreading distance Xd will be attained when the flow
reaches its fully developed, steady state. In the unsteady sce-
nario, when the impinging fountains have a relatively high Rey-
nolds number (Re P 125), however, the fountain floods the
whole computational domain and no such unique spreading dis-
tance can be attained.
Fr ¼ 10; Re ¼ 50; Pr ¼ 7 and H=Xin ¼ 20.

ferent Re at Fr ¼ 10; Pr ¼ 7 and H=Xin ¼ 15.
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Fig. 9 contains the temperature contours for impinging foun-
tains with different Pr at Fr ¼ 10; Re ¼ 50 and H=Xin ¼ 15. As
Re < 125 the fully developed flows should show distinct fountains
with measurable spreading distances with different Pr, and the re-
sults presented in Fig. 9 demonstrate this. Fig. 9 also shows that the
temperature contours for all the Pr considered, from Pr ¼ 7 to 700,
are fundamentally the same, with little variation in the spreading
distance and in the structure of the vortices and intrusion.

4.2. Numerical validation of the scaling

As discussed above, only the lower Re impinging fountains at-
tain a measurable fully developed spreading distance. Hence in this
section, only the direct numerical simulation results for these
impinging fountains are presented.

The spreading distance in the current work is defined as the
horizontal distance from the centreline to the location along the
ceiling where the local temperature excess ðT � T1Þ drops to 90%
of the inlet excess ðTin � T1Þ. This definition is similar to that used
by Goldman and Jaluria [21] in their experiments on free fountains.

Fig. 10 contains the time series of the augmented spreading dis-
tance ðH þ XdÞ=Xin with different non-dimensional ceiling height
ratios (H=Xin ¼ 10, 17.5, 20, 22.5, 25 and 27.5) at
Fr ¼ 10; Re ¼ 50 and Pr ¼ 7. It is found that at each ceiling height
ratio the spreading distance of the fountain will eventually settle to
a nearly constant value when the flow is fully developed. It is evi-
Fig. 9. Steady-state temperature contours for different Pr at Fr ¼ 10; Re ¼ 50 and
H=Xin ¼ 15.
dent that this fully developed augmented spreading distance in-
creases with H=Xin, as further demonstrated in Fig. 11(a), where
the fully developed augmented spreading distance at s ¼ 1500 is
plotted against H=Xin for 10 6 H=Xin 6 30 at Fr ¼ 10; Re ¼ 50 and
Pr ¼ 7. The data presented in this figure is further approximated
by ðH=XinÞ1=2, similar to that obtained by Holstein and Lemckert
[29] for round fountains,

H þ Xd

Xin
� �8:0þ 9:2

H
Xin

� �1=2

; ð30Þ

which is seen to provide a good fit with a variation of less than
�0.10. This confirms the relation between ðH þ XdÞ=Xin and H=Xin

predicted in the scaling (27) and shows that / ¼ 1=2 is the appro-
priate power for the plane impinging fountains with the values of
Re; Fr and H=Xin considered here.

Fig. 11(b) contains the steady-state augmented spreading dis-
tance plotted against Pr for 7 6 Pr 6 700 at Fr ¼ 10:0; Re ¼ 50
and H=Xin ¼ 15. It is found that the variation in the augmented
spreading distance from Pr ¼ 7 to 700 is only 0.25%, indicating that
the dependence of ðH þ XdÞ=Xin on Pr is negligible. Thus g ¼ 0 is the
appropriate power in the scaling (27) for the range of Pr
considered.

Fig. 11(c) contains the steady-state augmented spreading dis-
tance plotted against Re for 50 6 Re 6 140 at Fr ¼ 10; Pr ¼ 7 and
H=Xin ¼ 15. Similarly, it is found that the variation in the aug-
mented spreading distance from Re ¼ 50 to 140 is only 0.15%, also
indicating that dependence of ðH þ XdÞ=Xin on Re is negligible. Thus
c ¼ 0 is the appropriate power in the scaling (27) for the range of
Re considered.

Since the powers /; g and c in the scaling (27) have been
empirically determined to be 1/2, 0 and 0, respectively, for the
plane impinging fountains with the parameter values considered,
the scaling (27) for a fixed H=Xin should be,

H þ Xd

Xin
� Fr2=3: ð31Þ

This is confirmed by the numerical data presented in Fig. 11(d),
where the fully developed augmented spreading distance is plotted
against Fr for 8 6 Fr 6 20 at Re ¼ 50, Pr ¼ 7 and H=Xin ¼ 15. It is
found that the data obtained in the range 8 6 Fr 6 20 are indeed
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well approximated by Fr2=3 and the following empirical scaling can
be established,

H þ Xd

Xin
� 21:1þ 1:4Fr2=3; ð32Þ

with a variation of less than �0.02 for 8 6 Fr 6 20. The power of Fr
is between 0.4 [29] and 0.74 [30]. However, it is noted that both
Holstein and Lemckert [29] and Lemckert [30] used a round nozzle.
5. Conclusions

The transient behaviour of strong impinging fountains dis-
charged vertically upwards into a homogeneous fluid and imping-
ing on a flat solid ceiling is investigated by dimensional analysis
and direct numerical simulation for 8 6 Fr 6 20; 50 6 Re 6
1000; 7 6 Pr 6 700 and 10 6 H=Xin 6 30.

From the transient flow evolution, it was observed that the
fountain behaviour can be broadly classified into those with an
approximately steady flow at full development, with a distinct
fountain contained within the domain when Re < 125, and those
where the fountain floods the entire domain, when Re P 125. In
the first scenario, a nearly constant, measurable spreading distance
is attained when the flow reaches full development, whereas in the
second scenario no spreading distance exists at full development.
The fountains are symmetric for 10 6 H=Xin 6 30 at full develop-
ment for Fr ¼ 10; Re ¼ 50 and Pr ¼ 7. However, for H=Xin P 32:5
the fountains lose symmetry and flap laterally, occasionally hitting
the ceiling for the cases tested.

The augmented spreading distance of the impinging fountain,
H þ Xd, is a function of the momentum flux min, the buoyancy flux
bin, the kinematic viscosity of fluid m, the thermal diffusivity of fluid
j, and the height of the ceiling H with dimensional analysis show-
ing that the following scaling can be established, ðH þ XdÞ=Xin �
Fr

4
3�

2
3ðcþgþ2/ÞRe�ðcþgÞPr�g ðH=XinÞ/, where the powers c;g and / are

to be determined empirically. Direct numerical simulation results
for the impinging fountains in the first scenario validate the scaling
obtained from the dimensional analysis and show that /; g and c
in the scaling (27) are 1/2, 0 and 0, respectively, for the plane
impinging fountains with the parameter values considered, leading
to the reduced scaling of ðH þ XdÞ=Xin � Fr2=3ðH=XinÞ1=2 for the
plane impinging fountains with the parameter values considered.
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